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(Or, Common solution of two problems with Fibonacci Numbers)
Arkady Alt, San Jose,California, USA.
Here we consider following two problems .
Probleml.
https://www.linkedin.com/groups,/8313943,/8313943-643365564 1868505090
Show that the difference of squares of Fibonacci numbers whose positions
in the sequence differ by two, is again a Fibonacci number.
and
Problem 2.
https://www.linkedin.com/groups/8313943/8313943-6433588844284780547
Show that the sum of the squares of two consecutive Fibonacci numbers is
again a Fibonacci number.

Both these problems related to Fibonacci Numbers f,,, defined recursively

fnJrl :fn"i'fnflanENand f0207f1 = 17

represents two identities
24+ f2o1 = font1 and f2| — fZ_| = fo, which holds for any n € N.

The following four proofs of these identities represents different approaches
to solve both problems.

Proof 1.
Applying Luca’s Formula® f,1m = fm—1fn + fiSny1 for m = n and m =
n + 1 we obtain, respectively,

f2n = fnflfn"’fnfnJrl = (fn+1 + fnfl) (fnJrl - fnfl) = 721+1_f72lfl and f2n+1 = f721+f2+1

* For any fixed m € NU {0}we will find representation of f,, 1., as linear
combination of f, and f,ithat is in the form f,1m = amfn + B frti-

Then we have ag = 1,8, = 0 (since frn40 =1 fn +0- fn41), a1 =0,58; =
1 (Since f’n-i—l - 0 : fn + 1. fn-‘rl) and Opt1 = Qp +O‘n—176n+1 = 671 +/8n—1a ne
N (Since fn+m+1 - fn+m + fn,+m,—1 — am+1fn + /Bm+1fn+1 - amfn +
ﬁanTH’l + amflf’n + ﬂmflf’fH’l <~

aerlfn + Bm+1fn+1 = (am + CVrnfl) fn + (5m + Bmfl) fn+1)~
Taking in account that f_; = f; — fo = 1—0 =1 by Math Induction we

obtain that a,, = fm—1 and 8, = f, for any m € NU {0} .

Proof 2.
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Since fn+2 = fn+1 + fna fn+1 = fn + fnfl and fn - fnfl = fnf2 then

fn+2 = 2fn + fnfl = 3fn + fnfl - fn = 3fn - fn72~
Hence, fn4+2 = 3fn — fn—2 and, therefore,
font2 = 3fan — fon—2,  font3 = 3font1 — fon—1,m €N.

Note that

( e — fﬁ) + (f’IQL - 72172) =i —fio=(far1 + fn)2 — (fn — fn71)2 =

(fn-‘rl + f’n—l) (2fn + f’n+1 - fn—l) =3 (fn-‘rl - f’n—l) (fn+1 + fn—l) =3 (f72L+1 -

and

fB-fi=1-0=1=f, fi-f21=1-1=0= fo.

Then, since both sequences f2,, — f2_, and fa, satisfies to the same re-
currence and the same initial values for n = 0,1 we can conclude, using Math
Induction, that f2,, — f2_; = fon.

Similarly, since

f§+f§+1:1:f1, f12+f12+1:2:f3

and

2
n—1

(P2 + FRa)+ (24 £20) = St (Fasr + Fu) 2+ S24 (farr — fa) =3 (f2+ f240)

then then by Math Induction f2 + f72L+1 = fon41 for any n € N

Proof 3.Math Induction.
We will prove,using Math Induction, that

frZL + f721+1 = font1 and f721+1 - fﬁfl = fon

holds for any n € N.

Note that erLJrl - 721—1 = (fn+1 - fnfl) (fnJrl + fnfl) = fn ( fn+1 + fnfl) .
Step of Math Induction:

For any n € N assuming fo,—1 = f2_; + f2 and f2, — f2_, = fon we
obtain

2 2 2 2 2 2
f2'n+1 = f27l =+ f27l—1 = f7z+1 —Jp—1t f’n—l + I =t n+1-
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f2n+2 = f2n+1+f2n = fﬁ"’f?ﬁl“‘fn ( fn+1 + fn—l) = fv%"‘fi-&-l"’fn fn+1+fnfn—1 =

fr,QL + fnfn—l + fn fn+1 + f»,2L+1 = fn (fn + fn—l) + f7L+1 (fn + fn-i—l) =
fafnir + Fasifore = fasr (Fu + fave) = fiye — fo-

Proof 4.. (With Bine’t formula).

)

¢ —¢"
Sincefngb(b_gb then fn+fn+1 ((¢¢)2> + (¢ 8)2

¢2n+$2"_2(¢$)"+¢2(n+1) _‘_52(”4-1) (¢¢)n+1 ¢2n+¢ Jrd)2(n-|—1) s 2(n+1)

(6-9)° (6-9)"
Since ¢¢ = —1 we have

¢+ 45 5T g (07 1) + 87T (67 +9) =

O (9-0) + 8" (B-0) = (6 =3 ) (0-9).

2n41 _ —72n+l
Hence, f2 + f2,4 = m = fon+1-
Also,
n+1 —n+1 2 n—1 —n—1\2
N o o N a0
(6-3)° (6-9)°
¢2n+2 + ¢2n+2 9 (¢$)7L+1 _ ¢2n72 _ $2n 2 (¢¢)7L 1 ¢2n+2 + ¢2n+2 ¢2n—2 . 52717

(¢—9)° (¢6—9)°

Since ¢2$2 = land ¢+ ¢ =1 then

I st T e A Gt R ek

:f’rZL-'rl— n—1 = 2 = — 2
(¢—9) (¢—9)
(#-7) (=7 g
(6—9)° ¢—¢
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