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(Or, Common solution of two problems with Fibonacci Numbers)
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Here we consider following two problems .
Problem1.
https://www.linkedin.com/groups/8313943/8313943-6433655641868505090
Show that the di¤erence of squares of Fibonacci numbers whose positions
in the sequence di¤er by two, is again a Fibonacci number.

and
Problem 2.
https://www.linkedin.com/groups/8313943/8313943-6433588844284780547
Show that the sum of the squares of two consecutive Fibonacci numbers is
again a Fibonacci number.

Both these problems related to Fibonacci Numbers fn, de�ned recursively
by

fn+1 = fn + fn�1; n 2 N and f0 = 0; f1 = 1;

represents two identities

f2n + f
2
n+1 = f2n+1 and f

2
n+1 � f2n�1 = f2n which holds for any n 2 N:

The following four proofs of these identities represents di¤erent approaches
to solve both problems.

Proof 1.
Applying Luca�s Formula* fn+m = fm�1fn + fmfn+1 for m = n and m =

n+ 1 we obtain, respectively,

f2n = fn�1fn+fnfn+1 = (fn+1 + fn�1) (fn+1 � fn�1) = f2n+1�f2n�1 and f2n+1 = f2n+f2n+1

:
* For any �xed m 2 N [ f0gwe will �nd representation of fn+m as linear

combination of fn and fn+1that is in the form fn+m = �mfn + �mfn+1:
Then we have �0 = 1; �0 = 0 (since fn+0 = 1 � fn + 0 � fn+1), �1 = 0; �1 =

1 (since fn+1 = 0 � fn+1 � fn+1) and �n+1 = �n+�n�1; �n+1 = �n+�n�1; n 2
N (since fn+m+1 = fn+m + fn+m�1 () �m+1fn + �m+1fn+1 = �mfn +
�mfn+1 + �m�1fn + �m�1fn+1 ()

�m+1fn + �m+1fn+1 = (�m + �m�1) fn +
�
�m + �m�1

�
fn+1).

Taking in account that f�1 = f1 � f0 = 1 � 0 = 1 by Math Induction we
obtain that �m = fm�1 and �m = fm for any m 2 N [ f0g :

Proof 2.
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Since fn+2 = fn+1 + fn; fn+1 = fn + fn�1 and fn � fn�1 = fn�2 then

fn+2 = 2fn + fn�1 = 3fn + fn�1 � fn = 3fn � fn�2:

Hence, fn+2 = 3fn � fn�2 and, therefore,

f2n+2 = 3f2n � f2n�2; f2n+3 = 3f2n+1 � f2n�1; n 2 N:

Note that�
f2n+2 � f2n

�
+
�
f2n � f2n�2

�
= f2n+2 � f2n�2 = (fn+1 + fn)

2 � (fn � fn�1)2 =

(fn+1 + fn�1) (2fn + fn+1 � fn�1) = 3 (fn+1 � fn�1) (fn+1 + fn�1) = 3
�
f2n+1 � f2n�1

�
and

f22 � f20 = 1� 0 = 1 = f2; f21 � f2�1 = 1� 1 = 0 = f0:
Then, since both sequences f2n+1 � f2n�1 and f2n satis�es to the same re-

currence and the same initial values for n = 0; 1 we can conclude, using Math
Induction, that f2n+1 � f2n�1 = f2n:
Similarly, since

f20 + f
2
0+1 = 1 = f1; f

2
1 + f

2
1+1 = 2 = f3

and

�
f2n+1 + f

2
n+2

�
+
�
f2n + f

2
n�1

�
= f2n+1+(fn+1 + fn)

2
+f2n+(fn+1 � fn)

2
= 3

�
f2n + f

2
n+1

�
then then by Math Induction f2n + f

2
n+1 = f2n+1 for any n 2 N

Proof 3.Math Induction.
We will prove,using Math Induction, that

f2n + f
2
n+1 = f2n+1 and f2n+1 � f2n�1 = f2n

holds for any n 2 N.
Note that f2n+1 � f2n�1 = (fn+1 � fn�1) (fn+1 + fn�1) = fn ( fn+1 + fn�1) :
Step of Math Induction:
For any n 2 N assuming f2n�1 = f2n�1 + f

2
n and f

2
n+1 � f2n�1 = f2n we

obtain

f2n+1 = f2n + f2n�1 = f
2
n+1 � f2n�1 + f2n�1 + f

2
n = f

2
n + f

2
n+1:
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f2n+2 = f2n+1+f2n = f
2
n+f

2
n+1+fn ( fn+1 + fn�1) = f

2
n+f

2
n+1+fn fn+1+fnfn�1 =

f2n + fnfn�1 + fn fn+1 + f
2
n+1 = fn (fn + fn�1) + fn+1 (fn + fn+1) =

fnfn+1 + fn+1fn+2 = fn+1 (fn + fn+2) = f
2
n+2 � f2n:

Proof 4.. (With Bine�t formula).

Since fn =
�n � �n

�� �
then f2n + f

2
n+1 =

�
�n � �n

�2
�
�� �

�2 +

�
�n+1 � �n+1

�2
�
�� �

�2 =

�2n + �
2n � 2

�
��
�n
+ �2(n+1) + �

2(n+1) � 2
�
��
�n+1�

�� �
�2 =

�2n + �
2n
+ �2(n+1) + �

2(n+1)�
�� �

�2
Since �� = �1 we have

�2n + �2(n+1) + �
2n
+ �

2(n+1)
= �2n+1

�
��1 + �

�
+ �

2n+1
�
�
�1
+ �

�
=

�2n+1
�
�� �

�
+ �

2n+1 �
�� �

�
=
�
�2n+1 � �2n+1

� �
�� �

�
:

Hence, f2n + f
2
n+1 =

�2n+1 � �2n+1

�� �
= f2n+1:

Also,

f2n+1 � f2n�1 =

�
�n+1 � �n+1

�2
�
�� �

�2 �

�
�n�1 � �n�1

�2
�
�� �

�2 =

�2n+2 + �
2n+2 � 2

�
��
�n+1 � �2n�2 � �2n�2 + 2 ����n�1�
�� �

�2 =
�2n+2 + �

2n+2 � �2n�2 � �2n�2�
�� �

�2
:
Since �2�

2
= 1 and �+ � = 1 then

f2n+1�f2n�1 =
�2n+2 + �

2n+2 � �2n�2 � �2n�2�
�� �

�2 =
�2n

�
�2 � �2

�
+ �

2n
�
�
2 � �2

�
�
�� �

�2 =

�
�2 � �2

��
�2n � �2n

�
�
�� �

�2 =
�2n � �2n

�� �
= f2n:

:
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